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Abstract: Spoof surface modes on nanostructured metallic surfaces are
known to have tailorable dispersion dependent on the geometric characteris-
tics of the periodic pattern. Here we examine the spoof plasmon dispersion
on an isolated grating and a grating-planar mirror cavity configuration. The
spoof polariton dispersion in the cavity is obtained using the scattering
matrix approach, and the related differential modal density of states is
introduced to obtain the mode dispersion and classify the cavity polariton
modes. The grating-mirror cavity geometry is an example of periodically
nanostructured metals above a planar ground plane. The properties dis-
cussed here are relevant for applications ranging from thin electromagnetic
perfect absorbers to near-field radiative heat transfer.
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1. Introduction

Eigenmodes in planar metal-insulator-metal (MIM) cavities at short separations have been ex-
tensively studied owing to the existence of surface plasmon excitations [1–3]. Surface plasmons
are resonant optical excitations at metal-dielectric interfaces and mainly arise due to the ma-
terial dispersion of the metallic permittivity. These surface bound optical eigenmodes confine
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light to extreme sub-wavelength dimensions and many applications require extending surface
plasmon confinement and dispersion to the infrared and THz parts of the electromagnetic spec-
trum [4–7] . Recently, Pendry and co-workers [8,9] have proposed and demonstrated engineered
dispersion by periodically nanostructuring surfaces by perforating perfect electrical conductors.
It has been shown that these perforated nanostructured surfaces support surface modes that have
dispersion similiar to real surface plasmons in metals, but with the effective plasma frequency
determined by the geometric parameters of the perforation. These engineered dispersive surface
modes confine light to subwavelength regions and are called spoof surface plasmons. Spoof sur-
face plasmons are also present in nanostructures made of real metals and they have been studied
using techniques such as finite difference time-domain [10] and effective medium theory [11]
showing the role of dissipation and dispersion. In a cavity configuration consisting of a two
dimensional periodic frequency selective surface above a metallic ground plane, these geomet-
rically induced surface modes give rise to perfect infrared absorbers which are actively under
development for infrared filtering and detection applications [12,13]. Furthermore, periodically
nanostrutured cavities with strong confinement have been examined for THz quantum cascade
laser applications [4–7] .

Recently, nanostructured surfaces have been studied within the framework of fluctuation-
induced electromagnetic forces and energy transfer [14–18]. These setups are cavities formed
between a planar metallic mirror and a nanostructured grating (or between two nanostructured
gratings) separated by vacuum gaps or dielectric material. Finite temperature equilibrium elec-
tromagnetic forces in planar cavities arise due to thermal or vacuum induced fluctuating cur-
rents on the cavity mirrors and their associated fluctuating electromagnetic fields [19]. By con-
trolling the cavity modal dispersion and density of modes through periodic nanoscale structur-
ing, one can modify the equilibrium cavity interaction [20, 21]. In planar cavities driven out of
thermal equilibrium, such as two plates maintained at different temperatures, nanostructured
control of the cavity modes allows for tailored energy transfer from the hot surface to the cold
surface. At separations shorter than the thermal wavelength, the near-field heat transfer becomes
much larger than the black-body contribution [22] and is dominated by the interaction of the
evanescent surface modes existing on the planar surfaces [23–25]. This enhanced heat trans-
fer has been experimentally measured in a planar cavity configuration [26]. Nanostructuring of
these surfaces can be used to tailor and enhance the heat transfer through an specific design of
the cavity modes [17, 18, 27].

In this paper we focus on the connection of the two previous topics and we study the impact
of spoof plasmons on one of the most relevant quantities for the calculation of fluctuation-
induced electromagnetic interactions, namely the differential density of states. We consider the
case of a cavity formed by grating in front of a metallic plane surface which is the archetype
of the geometrical configuration used in most experimental applications. We show how the dif-
ferential density of states, which describes the difference between the number of modes in the
cavity and the number of modes for the isolated surfaces, is strongly affected at low frequencies
by the nanostructuring and the presence of spoof plasmons. In section 2 of this paper, we first
review the theory of multimodal spoof plasmon dispersion on a perfectly conducting metal-
lic grating, and compare the dispersion for the perfect grating with the computed transverse
magnetic (TM) reflection from a finite conductive Au grating. In section 3, the cavity modes
in a planar nanostructured cavity are examined. We first extend the theory described in sec-
tion 2 to calculate analytically the modes in a cavity formed by a perfectly conducting metallic
grating and a perfectly reflecting plane. Then we study the case where a real metal Au Drude
model is used instead of a perfect electric conductor. The scattered fields from the metallic
planar grating are treated using the Fourier modal scattering matrix method (RCWA) described
in [16]. The modal expansion of the transverse fields in the planar cavity is performed and
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the cavity boundary value problem is treated in the vacuum region between the nanostructured
surface and the planar mirror. We then introduce and analyze the differential modal density of
states, which contains information of the mode structure for both the cavity problem and the
isolated surfaces. We numerically compute the differential modal density of states as a function
of grating-plane separation, and compare it with that corresponding to the plane-plane cavity.
This allows us to observe and categorize the spoof plasmons on the nanotructured grating at
short separations, as well as the other various modes present in the system. Finally, section 4
contains our conclusions.

2. Spoof surface modes

h	


Lx	
w	
z = 0	


z =-a	

Region 0	


Region 1	


Region 2	


x	


Fig. 1. Grating-mirror cavity. The lower mirror is a periodically structured metallic grating.
The upper mirror is a metallic plane at z =−a and the lower mirror top surface is at z = 0.

The simplest structure in which to examine these designer spoof surface plasmon modes is a
perfectly conducting grating structure. The lower part of Fig. 1 shows schematically the basic
1D grating. We begin by considering the TM surface modes in the perfectly conducting grating
structure with period Lx, groove width w, and depth h. The plane of incidence is the x− z
plane, therefore ky = 0. The electromagnetic boundary value problem is split into two regions.
In region 1, the vacuum or dielectric region above the etched grating (z≤ 0), the H and E field
are given by a Bloch mode expansion,

H(1)
y = ∑

n
Hn exp(ik(n)x x− iq(n)z z), E(1)

x =−∑
n

q(n)z

k
Hn exp(ik(n)x x− iq(n)z z). (1)

Here k(n)x = kx + 2πn/Lx and q(n)z =

√
k2− k(n)2x . The H field is over the entire period of the

grating and satisfies Bloch periodic boundary conditions, and the E field is obtained directly
from Maxwell’s equations. Region 2 is defined for z ≥ 0, the groove is etched in a perfect
conductor, thus the electric field is confined in the groove, (|x| ≤ w/2), and must vanish at the
bottom of the groove. If we consider only the fundamental mode, the transverse magnetic field
and electric field in the groove the electric field are given by

H(2)
y =−iBcos(k(z−h)), E(2)

x = Bsin(k(z−h)), (2)

snaughton
Footer



and E(2)
z = 0. The boundary conditions at the grating top surface, z = 0, require the continuity

of the tangential H fields. By integrating over the groove width we obtain

∑
n

Hnsn =−iBcos(kh), sn =
sin
(

k(n)x w/2
)

k(n)x w/2
. (3)

The continuity of the tangential electric field at z = 0 and using the orthogonality of the Fourier
mode expansion, we obtain

Hn = B
k

q(n)z

w
Lx

sin(kh)sn. (4)

Combining Eq. (3) and Eq.(4), we obtain the resonance condition for the spoof surface plas-
mons,

kw
Lx

∑
n

s2
n√

k(n)2x − k2
= cot(kh), (5)

for the multimodal single grating [28]. For a single mode (n = 0), the spoof surface mode is

w
Lx

s2
0 tan(kh) =

√
k2

x − k2

k
, (6)

which reduces to the standard result [8, 9].
Eq. (5) is a transcendental equation for the general dispersion of a resonant excitation of

the perfect metallic grating. The solution of the transcendental equation gives the dispersion
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Fig. 2. Spoof plasmon dispersion as a function of the grating period for fixed duty cycle
and groove depth. The duty cycle is 64% and the grating depth is h = 216 nm for all cases.
(a) Lx = 250 nm and w = 160 nm; (b) Lx = 500 nm and w = 320 nm; (c) Lx = 750 nm and
w = 480 nm. The horizontal line indicates the effective plasma wave-vector kpl = π/2h.
The units of the k and kx are both µm−1.
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Fig. 3. Spoof plasmon dispersion relation as a function of the groove depth h. The grating
period and width are fixed at 250 nm and 160 nm, respectively. The groove depth is h= 200
nm (blue solid line), h = 300 nm (purple dashed lines), h = 400 nm (red dashed lines), and
h= 500 nm (gold dashed lines). As we increase the value of h we observe the appearance of
high order modes above the fundamental, indicating the relevance of the structure’s depth
for the dispersion relation.

relationship for spoof plasmons. Figure 2 shows the computed spoof plasmon dispersion re-
lationship from a perfect conducting grating with the geometric dimensions outlined in the
caption. In Fig. 2, the grating duty cycle and depth are held fixed while the grating period is
allowed to vary. The effective spoof surface plasmon wavelength for these geometric parame-
ters can be obtained from the asymptotic kx behavior. The same effective plasmon wavelength
of λpl ≈ 864 nm is obtained for the grating parameters in the caption. From Fig. 2, it appears
that the spoof mode dispersion is only weakly dependent on the period with fixed duty cycle.
The main impact of the period is to reduce the Brillouin zone. The effective spoof plasmon
wavelength should be contrasted with plasma wavelengths for real metals, which occur in the
ultraviolet portion of the spectrum. For instance, the Au plasma wavelength used in our Drude
model is λpl = 146 nm [8, 9]. The nature of the dispersive mode branch below the light line
strongly confines the mode to the surface due to the exponential decay of the Bloch mode. The
effect of nanostructuring on the perfect conductor has created dispersive surface modes which
mimic surface plasmons with much lower equivalent plasma frequencies.

Figure 3 shows the influence of the grating depth on the geometrically induced surface mode
for fixed period and duty cycle. Here the depth of grating is varied from 200 nm to 500 nm.
The induced surface mode dispersion is seen to be very sensitive to grating depth, and becomes
multimodal at grating depths larger that 200 nm for the chosen period and duty cycle. All the
high-order modes have a cutoff at the lightline for the value k = kx = mπ/h [28]. Indeed, the
first term of the series in (5) diverges for k = kx which leads to the solutions of tan(kh) = 0.
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kx 

k 

Fig. 4. Zeroth order TM polarized reflection at normal incidence from a grating with finite
conductivity given by the Drude model parameters for Au. The geometrical parameters of
the grating are h = 400 nm, Lx = 250 nm, and w = 160 nm. The bright features below the
light-line (k < kx) represent poles of the reflection matrix.

This strong dependence of the spoof plasmon dispersion on the grating depth makes the system
easily tunable for various applications.

The geometrically induced surface plasmon modes are strictly speaking found on the perfect
conducting grating. It is natural to inquire if the spoof plasmons occur on a metallic grating
with finite conductivity. Figure 4 shows the computed zeroth order reflection for TM polarized
incident light using the Fourier modal scattering method (RCWA) from a Au grating (see also
section 3.2). We use a Drude model permittivity for gold given by

ε(ω) = 1−
ω2

pl

ω(ω + iγ)
, (7)

where ωpl = 1.27524× 1016 sec−1 and γ = 6.59631× 1013 sec−1. There is qualitative agree-
ment between the numerically computed modal dispersion for the finite conductive case with
the analytic dispersion for the perfect conducting grating shown in Fig. 3 for the groove depths
between 400 to 500 nm. The finite conductivity and the dispersion of the grating’s permittivity
affect the values of the effective spoof plasmon dispersive resonances by shifting and increas-
ing the resonances’ width and by effectively modifying the grating’s geometrical parameters
through a finite penetration depth δω (in this case δω ∼ 25nm for k = ω/c∼ 10 µm−1).

3. Cavity modes

In this section, we examine electromagnetic resonances in a planar periodically nanostructured
cavity represented in Fig. 1. The cavity consists of a planar mirror (surface 1) located at z =−a,
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and the periodically modulated grating substrate (surface 2) lies at z = 0. Explicitly, we define
region 0 as a semi-infinite mirror region corresponding to surface 1, i.e.−∞ < z≤−a; region 1
is the cavity vacuum gap between the planar mirror and the planar top surface of the grating, i.e.
−a≤ z≤ 0; and region 2 is the etched grating region, i.e. z≥ 0. The cavity’s modal properties
are obtained by describing the fields in these three regions, and by requiring the continuity of
the transverse fields across each of the planar interfaces [16, 21]. In the following we are going
to analyze this geometry in two cases. In the first case, both the mirror and the grating are
made of a perfect electric conductor. As in the previous section most of the calculations can
be performed analytically. The results will then be compared with the second case, where the
cavity is formed by a plane metallic mirror above a metallic grating described by the Au Drude
model.

3.1. Perfect electric conductors

In our first scenario, the use of a perfect electric conductor greatly simplifies the application
of the boundary conditions. Indeed, with respect to the procedure described in the previous
section, the presence of the plane at z =−a only amounts to replacing the fields in (8) with the
following expressions

H(1)
y =∑

n
Hn exp(ik(n)x x)cos(q(n)z (z+a)), E(1)

x = i∑
n

q(n)z

k
Hn exp(ik(n)x x)sin(q(n)z (z+a)). (8)

Following the same reasoning as above one obtains

−k
w
Lx

∑
n

s2
n

q(n)z

cot(q(n)z a) = cot(kh), (9)

which in the limit a→ ∞ reduces to the result of the previous section.
Figure 5 shows the computed cavity mode dispersion relationship for the geometric di-

mensions outlined in the caption. At short distances the cavity modes are red-shifted spoof-
plasmons resonances (as comparison we also plot the grating’s spoof-plasmons). Note that
because of the planar mirror, the higher order spoof-plasmon modes are now allowed to cross
into the propagating sector, intersecting the lightline at k = kx = mπ/h. At larger separations
pure propagating modes start to appear, and in the evanescent region the cavity spoof-plasmons
quickly tend towards the modes for the isolated grating.

3.2. Metallic case: modes and differential density of states

We now consider the case where the cavity grating and the mirror are no longer perfect con-
ductors, but are made of finite conductive metal described by a Drude mode for the Au grating
and mirror. The symmetry and the underlying periodicity of our system implies that the modes
are naturally expanded in a Bloch planewave mode basis, leading to

Ψ0 = ∑
µ

Cµ X (−)
µ,0 e−iq(0)z z (10)

Ψ1 = ∑
µ

Aµ X (+)
µ,1 eiq(1)z z +Bµ X (−)

µ,1 e−iq(1)z z (11)

Ψ2 = ∑
µ

Dµ X (+)
µ,2 eiq(2)z z, (12)

where Ψ denotes either the E or H field, q(i)z =
√

k2εi−q2
n−q2

m is the propagation eigenvalue
for the uniform media in the i-th region, and µ = (n,m,σ) where σ = s, p denotes the state of

#206675 - $15.00 USD Received 19 Feb 2014; revised 29 Apr 2014; accepted 5 May 2014; published 15 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012424 | OPTICS EXPRESS  12431



0 2 4 6 8 10 12
0

2

4

6

8

10

12

kx

k

0 2 4 6 8 10 12
0

2

4

6

8

10

12

kx

k

Fig. 5. Modes in a perfectly conducting grating-plane cavity (full blue lines) compared
with the spoof-plasmons for the isolated grating (red dashed lines). The grating parameters
are Lx = 250 nm, h = 400 and w = 160 nm and the cavity length is a = 50 nm (left) and
a = 400 nm (right). The thin black line is the lightline separating the propagating (above
the line) from the evanenscent sector (below the line). The dotted black line in the right plot
indicates the modes for a plane-plane cavity of the same separation. The units of k and kx
are both µm−1.

polarization. Here qn = kx +2πn/Lx and qm = ky +2πm/Lx (n,m are integers). The boundary
conditions on the continuity of the transverse fields at the two interfaces (Ψ0(z=−a) =Ψ1(z=
−a) and Ψ1(z = 0) = Ψ2(z = 0)) allow for the determination of the coefficients Aµ , Bµ Cµ and
Dµ .

In previous work, the Fourier modal solution for scattering from the periodically modulated
surface using both S-matrix and T-matrix techniques has been described [16, 29–34]. Here, we
will use the S-matrix formalism to obtain a secular equation for the eigenmodes in the cavity.
The boundary condition at the grating top surface (z= 0) is solved by the exact reflection matrix,
R, which can been determined for arbitrary input amplitude Aµ . Eq. (11) can be rewritten as

Ψ1 = ∑
µ

Aν

(
δµ,ν X (+)

µ,1 eiq(1)z z +∑
ν

Rµ,ν X (−)
µ,1 e−iq(1)z z

)
, (13)

where B = RA in matrix notation. The use of the S-matrix implies that we have satisfied the
continuity of the transverse field and scattering boundary conditions at z = 0. The boundary
conditions at the planar mirror at z = −a are the same as for the planar cavity case, and we
obtain

Cµ eiq0
z a = iαµ Aµ e−iq1

z a +βµ Bµ eiq1
z a, (14)

where

αµ =


1

2
√

q(0)z q(1)z

(q(1)z −q(0)z ) σ = s

1

2
√

q(0)z q(1)z

(√
ε0
ε1

q(1)z −
√

ε1
ε0

q(0)z

)
σ = p,

#206675 - $15.00 USD Received 19 Feb 2014; revised 29 Apr 2014; accepted 5 May 2014; published 15 May 2014
(C) 2014 OSA 19 May 2014 | Vol. 22,  No. 10 | DOI:10.1364/OE.22.012424 | OPTICS EXPRESS  12432



and

βµ =


1

2
√

q(0)z q(1)z

(q(1)z +q(0)z ) σ = s

1

2
√

q(0)z q(1)z

(√
ε0
ε1

q(1)z +
√

ε1
ε0

q(0)z

)
σ = p.

The z propagation terms, qz, depend on the discrete spatial frequency index, µ = (nm,σ) and
the polarization index σ =s or p. The projection of the cavity mode onto the planar mirror mode
is given by

Cµ =− i
αµ

Aµ e−i(q1
z+q0

z )a. (15)

This leads to the following secular equation

∑
ν

(
−iδµ,ν

(
1

αµ

+αµ

)
e−iq1

z a− eiq1
z a

βµ Rµ,ν

)
Aν = 0 (16)

which can be simplified to give

∑
ν

(
δµ,ν − e2iq(1)z,µ a

ρµ Rµ,ν

)
Aν = 0. (17)

The cavity scattering matrix is defined as Dµ,ν = δµ,ν − e2iq(1)z,µ a
ρµ Rµ,ν , where

ρµ =


irs = i

(
q(1)z −q(0)z

q(1)z +q(0)z

)
σ = s

irp = i
(

ε0q(1)z −ε1q(0)z

ε0q(1)z +ε1q(0)z

)
σ = p,

(18)

is the diagonal reflection matrix, and rs and rp are the Fresnel reflection coefficients from the
planar interface. The generalized secular equation for the periodically modulated mirror cavity
is now a matrix equation

det(I− eiqza ·ρ · eiqza ·R) = 0. (19)

Here eiqza are the diagonal propagation matrices. The solution to the general secular equation
(19) for (ω,kx,ky) represents the dispersion relationship for the cavity resonances which depend
parametrically on the mirror separation distance, a.

The cavity polariton dispersion is then obtained from the zeros of the secular determinant of
the cavity scattering matrix, which are in general complex valued because of the dissipation in
the metal. The real part of the complex zero represents the cavity resonance frequencies, ωn(a),
and the imaginary frequency component the resonance linewidth. Rather than solving for the
dispersion directly, it is convenient to examine the analytic properties of the secular determinant
and the modal dispersion relationship by constructing the differential modal density of states.
The differential modal density of states is related to the secular determinant by

∆n(ω,kx,ky,a) =−
1
π

Im∂ω logdet(I− eiqza ·ρ · eiqza ·R), (20)

where ∆n = n(ω,kx,ky,a)− n(ω,kx,ky,∞), and n(ω,kx,ky,a) gives the number of modes per
unit of frequency for a cavity separation a. In this respect n(ω,kx,ky,∞) represents the density
of states for an infinitely separated cavity (isolated surrfaces). Eq. (20) arises from the decom-
position of the secular determinant into the ratio of determinants of transfer matrices which is
used to isolate the zeros and poles of the cavity scattering matrix (see [29] for details). This
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results in the well known Krein formula for the differential density of states and is related to
a contour integral in the complex frequency plane [35]. Here the contour is restricted to the
real positive frequency axis and Eq. (20) is a function of a real frequency variable. In Eq. (20),
the secular determinant may possess singularities that arise from poles in the planar or grat-
ing reflection matrices. These poles correspond to electromagnetic resonances on the isolated
surfaces and contribute to the differential density of states through n(ω,kx,ky,∞). The poles
of ρ correspond to isolated surface plasmon modes on the planar metal surface, and the poles
of R correspond to the spoof surface plasmon modes on the isolated grating surface. We will
examine the differential modal density of states and infer the cavity mode dispersion within this
context.

3.3. Spoof plasmons in a metallic cavity

The cavity differential modal density of states and dispersion is examined graphically for dif-
ferent plane grating spacings. The differential density of states is computed numerically from
the complex secular determinant and we plot Eq. (20) as a function of k = ω/c versus kx, fixing
ky = 0. Figure 6 shows the computed differential modal density of states, and illustrates the
mode dispersion of the grating-plane cavity (left panels) and of the plane-plane cavity (right
panels). The series (a)-(c) shows the cavity dispersion comparison as a function of separation.
The dispersion is naturally separated into regions below the light-line k < kx, and regions above
the light-line k > kx. Furthermore, the sign of the differential modal density of states provides
insight into the type of resonance. Positive values of Eq. (20) (bright regions) correspond to
positive differential modal density of states and represent resonant cavity modes at finite sep-
aration. Negative graphical values (dark regions) correspond to negative differential density of
states and come from the resonant modes on the isolated surfaces or the continuum of propaget-
ing modes in the cavity [29]. In the following, we will examine metallic cavities with a vacuum
gap that are modeled using the Au Drude model described in previous sections.

For the grating-plane cavity (left panels) of Fig. 6 the differential density of states is plotted
with the ∆n= 0 contours shown in blue. Below the light-line, (kx > k), at the shortest separation,
we find a dark line region that is bracketed by the ∆n = 0 contours and a bright region corre-
sponding to positive differential density of states is seen above the dark line. The corresponding
dispersive modes for the dark region are the p-polarized spoof polariton that occurs on the iso-
lated Au grating (see also Fig. 4) and the bright region above correspond to p-polarized spoof
plasmon cavity resonant mode, respectively. They can be compared to the analogous PEC spoof
polariton modes in Fig. 5. At small grating mirror separations, the differential modal density of
states is substantially different from zero because the cavity and the isolated modes are differ-
ent. As the separation is increased, these modes start to overlap and the differential density of
states is reduced (see also Fig. 5). This happens first at large kx due to the Rayleigh propagation
factors in Eq.(20), which are exponentially decaying below the light-line. Above the light-line,
bright line propagating cavity modes are evident. The splitting of these cavity modes is due to s
and p polarized reflections from the grating, which are very different for the two polarizations.
At larger separations, we see that above the light-line the modal density of states has bright line
modes that occur on a negative background that corresponds to the continuum modes in the
cavity. The bright line cavity modes refer to a positive differential modal density of states and
also exhibit avoided crossing behavior in the multimodal cavity.

For the planar cavity (right panels) in Fig. 6, we see bright-line parabolic mode disper-
sion above the light-line on the continuum (dark) background. For small kx, there is negligible
brigth-line splitting since the reflection from a planar mirror is degenerate for s and p polariza-
tion. This is in sharp contrast to the large polarization mode splitting seen for the grating cavity.
For larger kx near the light line, the planar parabolic cavity modes are weakly split due to small
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Fig. 6. Differential modal density of states of a nanostructured grating-plane cavity (left
panels) compared to plots of a plane-plane cavity, for various separations (a) a = 50 nm;
(b) a = 400 nm; (c) a = 750 nm. In all these plots ky is fixed to zero. The zero density
contours ∆n = 0 are highlighted in blue. The parameters of the grating are Lx = 250 nm,
w = 160 nm, and h = 216 nm (these parameters correspond to the metallic grating studied
in recent Casimir force measurements [21]). Both the grating and the plane are described
using the Drude model for gold. The units of k and kx are both µm−1, while the density of
states is in units of πc/sec.
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differences in large angle s and p polarized reflections from planar surfaces. Below the light-
line, we can see both a dark line and a bright line mode near the light line. The bright line mode
is symmetric red-shifted metal-vacuum-metal surface plasmon dispersion mode which asymp-
totically approaches the plasma frequency for Au, kpl = 2π/λpl with λpl = 146 nm from be-
low [36] (the antisymmetric mode is out of the plotted range). The dark line mode corresponds
to isolated surface plasmon modes on the individual metal surfaces. At large separations, the
bright line approaches the isolated mode and they become degenerate. An accurate inspection
of the right left panel show that modes similar to the one just described also appear in the plane-
grating geometry. These modes correspond to the isolated plasmon living on the mirror plane
and the corresponding cavity plasmon with a difference frequency due the interaction with the
grating.

Fig. 7. Differential modal density of states plots for nanostructure grating-plane cavity for
different separations: (a) a = 50 nm and (b) a = 250 nm. The period and the width are the
same as in fig. (6), but the depth is different, h = 400 nm. The units of k and kx are both
µm−1, while the density of states is in units of πc/sec.

Figure 7 shows the computed cavity differential modal density of states and mode dispersion
for the same grating as in figure 6 but more deeply etched, h = 400 nm. Multimodal cavity
surface polaritons are seen below the light line at very short mirror grating separation, a = 50
to 250 nm. This result is consistent with the prediction of multimodal spoof plasmon grating
results shown in Fig. 3 and Fig. 5 for the perfect conducting single grating and grating-plane
cavity. Variation of the grating depth is seen to have a large impact on the cavity polariton
dispersion below the light line since we have seen that it greatly affects the spoof plasmon
dispersion. Above the light line, we see a complex set of (bright region) cavity modes with
increasing continuum density of states for larger mirror separations.

4. Conclusions

We have demonstrated that geometrically induced surface modes, or spoof plasmons, on metal-
lic gratings result in cavity polariton modes in nanostructured cavities. These spoof surface
plasmon modes strongly confine light to the grating surface and can be designed to have dis-
persion in the infrared and THz regions of the spectrum. While these spoof surface modes are
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predicted for perfect conductive gratings, we have shown that these surface modes are also
present on gratings with finite conductivity. By forming a cavity from a periodic grating and a
planar mirror, cavity polariton modes are observed below the light-line and exhibit dispersive
polaritonic resonances at short mirror separations. We have derived an analytic expression for
the modes of the perfectly conducting grating-plane cavity, and compared them with the numer-
ically computed modes for a gold grating-plane cavity. These latter one were obtained using an
RCWA approach. We have also introduced the differential density of states, whose zeros and
poles contain information about the resonant modes of the grating-plane cavity problem as well
as the individual surfaces. The differential density of states is a very useful indicator of the
mode dispersion and hybridization in planar nanostructured cavities. It provides insight into
the origin of cavity resonances based on its sign. Cavity modes (bright lines in Figs. 6 and 7)
move in the k−kx plane as a function of cavity separation, while the isolated modes (dark lines
in Figs. 6 and 7) do not change position. Below the light line, evanescent modes arise from
singularities in the grating and plane reflection matrices in Eq. (20) and their interaction with
the other surface. In particular the nanostructuring generates low frequency spoof polariton dis-
persion relations which strongly depend on the grating geometrical parameters. Due to a lack
of symmetry in the cavity the grating’s spoof plasmons do not strongly hybridize and spoof
polariton cavity modes are only slightly shifted with respect to the isolated ones. These modes
would exist in a grating-grating cavity where symmetry dictates stronger hybridization and
even and odd parity cavity modes, similar to hybridized metal-vacuum-metal plasmon seen in
planar-planar cavities [36, 37]. We find that the geometrically induced cavity surface polariton
modes from the nanostructured grating strongly affects the differential density of modes in the
nanostructured cavity at short grating-plane separations and low frequency. By increasing the
cavity separation, spoof plasmon cavity modes quickly overlap with their isolated counterparts
reducing their contribution to the differential density of states. The low frequency enhancement
of the differential density of states with respect to the plane-plane cavity can lead to increased
electromagnetic forces and energy transfer at short separations in the former geometry. This
effect can be further enhanced in grating-grating cavities with identical gratings.

Although we have presented the cavity polaritons in a reflection based cavity, an analysis
of a transmissive periodic nanostructured surface above a planar mirror or ground plane leads
to similar resonant cavity modes. These modes can be coupled to by free space planewaves
and lead to thin perfect absorbing structures. These perfect absorbers can have resonant modes
in the infrared and have been observed in infrared frequency selective surfaces on a dielectric
spacer above a ground plane [12]. It is expected that engineering the spoof surface plasmon
dispersion can lead to a new class of energy harvesting devices based on these new infrared
absorbing structures.
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